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We study the effects of random positional disorder in the transmission of waves in the one-dimensional
Kronig-Penny model formed by two alternating dielectric slabs. Numerical simulations and experimental data
revealed that the so-called resonance bands survive even for relatively strong disorder and large number of
cells, while the nonresonance bands disappear already for weak disorder. For weak disorder we derive an
analytical expression for the localization length and relate it to the transmission coefficient for finite samples.
The obtained results describe very well the experimental frequency dependence of the transmission in a
microwave realization of the model. Our results can be applied both to photonic crystals and semiconductor
superlattices.
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I. INTRODUCTION

In recent years there is a high activity in the study of wave
�electron� propagation through one-dimensional �1D� peri-
odic structures �see, for example, Ref. 1 and references
therein�. Much is already known about band structures of
perfectly propagating waves in strictly periodic and rela-
tively simple devices and one of the current interests is the
influence of random imperfections that are commonly
present in real experiments. These imperfections are origi-
nated, for example, from the variations in the medium pa-
rameters such as the dielectric constant, magnetic permeabil-
ity, and barrier widths or heights2–9.

The analysis of scattering properties of periodic-on-
average �when periodic systems are slightly affected by a
disorder� models with various kinds of disorder is mainly
related to numerical methods. It is obvious that giving im-
portant results for specific models and parameters, the nu-
merical approaches cannot serve as a guide for the under-
standing of generic properties caused by disorder. In this
paper we try to fill this gap in the theory by the derivation of
the localization length for the 1D Kronig-Penney model, re-
lating it to the properties of transmission through a finite
number of disordered barriers.

Our analytical results are compared with the experimental
data obtained for a single-mode microwave guide. We show
that in spite of the standard restrictions of analytical results
�restricted to infinite samples and weak disorder�, compari-
son between theory and experiment is quite good. This fact is
highly nontrivial since the experimental data are strongly
influenced by absorption in the waveguide walls, an effect
that is also not taken into account analytically.

Our study is relevant to other types of 1D stratified media,
for example, to electron transport through random
superlattices10 �disordered arrays of semiconductor quantum
wells/barriers� or acoustic waves in random layered media11.
Also, similar properties of the transmission are expected to

occur in the 1D quantum Kronig-Penney model �with alter-
nating rectangular wells and barriers�.

In Sec. II the model is specified and the transfer matrix
equations are derived. In Sec. III the experimental setup is
briefly discussed and the numerical simulations for the trans-
mission coefficient are compared with experimental results
for the case of an array of 26 cells and different amounts of
positional disorder. In Sec. IV we present the main experi-
mental results and discuss some of the properties of trans-
mission. In Sec. V we derive, for the regime of weak disor-
der, the analytical expression for the logarithm of the
transmission in connection with the inverse localization
length. We compare there too the numerical simulations and
analytical results with the experimental data and show the
effectiveness of our analytical approach. In Sec. VI, we sum-
marize our results.

II. MODEL

We consider an array formed by two alternating dielectric
slabs with refractive indices na and nb placed in an electro-
magnetic metallic-wall waveguide of constant width w and
height h; see Fig. 1. For convenience, the layers with the
refractive index na�nb� shall be referred as to the a layers �b
layers�. The lengths of the nth a and b layers are denoted,

b

5

6

4/

 
 (n+1)

 (n)
b

 (n+1)
a

FIG. 1. Kronig-Penney model with Teflon bars of constant
length db�n�=db�n+1�=db and air spacings da�n� defined by Eq.
�2.1�.
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respectively, by da�n� and db�n�. The positional disorder in
our model consists in randomly varying lengths of only one
type of layer, say the a layer, such that

da�n� = da + ���n�, �da�n�� = da, db�n� = db. �2.1�

Here � is rms deviation of da�n� and �2 its variance. Hence,
��n� is a sequence with zero average and unit variance. In
this work we assume that ��n� is random uncorrelated, i.e.,

���n���n��� = �nn�, ���n�� = 0. �2.2�

The angular brackets � . . . � stand for a statistical average over
different realizations of randomly layered structure. Note that
the random structure is periodic on average with the period
d=da+db.

In this work we shall treat the lowest TE mode of fre-
quency � whose electric field E is defined by

Ey = sin��z/w���x�, Ex = Ez = 0 �2.3�

�see Fig. 1�. Within every a or b layer, the function ��x�
obeys the 1D Helmholtz equation,

� d2

dx2 + ka,b
2 ��a,b�x� = 0, �2.4�

with the wave numbers

ka,b =
2�

c
�na,b

2 �2 − �c/2w�2. �2.5�

In the incoming-outgoing wave representation, the solution
of Eq. �2.4� for the nth elementary cell reads

�an
�x� = An

+ exp�ika	x − xa�n�
� + An
− exp�− ika	x − xa�n�
�

�2.6�

inside the an layer, xa�n��x�xb�n�, and

�bn
�x� = Bn

+ exp�ikb	x − xb�n�
� + Bn
− exp�− ikb	x − xb�n�
�

�2.7�

inside the bn layer, xb�n��x�xa�n+1�. Here An
� and Bn

� are
complex amplitudes of the forward/backward traveling
wave; the coordinates xa�n� and xb�n� denote the left-hand
boundaries of the an and bn layers, respectively.

With the use of the continuity conditions for the wave
function �a,b�x� and its derivative at the boundaries x
=xb�n� and x=xa�n+1� one can obtain the transfer relation
for the amplitudes An+1

� and An
� of two adjacent cells,

�An+1
+

An+1
− � = �Q11�n� Q12�n�

Q21�n� Q22�n� ��An
+

An
− � . �2.8�

The transfer matrix Q̂�n� has the following elements:

Q11�n� = 	cos�kbdb� + i	+ sin�kbdb�
exp	ikada�n�
 = Q22
� �n� ,

�2.9a�

Q12
� �n� = i	− sin�kbdb�exp	ikada�n�
 = Q21�n� . �2.9b�

Here the asterisk stands for the complex conjugation and we
introduced the parameters 	�,

	� =
1

2
� ka

kb
�

kb

ka
�, 	+

2 − 	−
2 = 1. �2.10�

The determinant of Q̂�n� is equal to unit, det Q̂�n�=1. Note

that the transfer matrix Q̂�n� differs from cell to cell only in
the phase factor exp	ikada�n�
.

The transfer matrix equation for the array of N cells with
or without positional disorder is

�AN+1
+

AN+1
− � = Q̂N�A1

+

A1
− � , �2.11�

where

Q̂N = Q̂�N�Q̂�N − 1� . . . Q̂�n� . . . Q̂�2�Q̂�1� . �2.12�

All matrices Q̂�n� �n=1,2 , . . . ,N� have the same form �2.9�,
only differing in the values of da�n�. In our following nu-
merical simulations and experimental setup we have AN+1

−

=0. Thus, the transmittance of N cells is given by

TN � 
AN+1
+ /A1

+
2 = 
Q11
N 
−2 = 
S12

N 
2, �2.13�

where S12
N is the scattering matrix element in the relation

� A1
−

AN+1
+ � = �S11

N S12
N

S21
N S22

N �� A1
+

AN+1
− � . �2.14�

In the case of no disorder, ��n�=0, the length of a layer
does not depend on the cell number n, da�n�=da. Therefore,

the unperturbed transfer matrix Q̂�0� is described by Eq. �2.9�
with da�n� replaced by the constant length da. As is known
�see, e.g., Ref. 1�, the transmission through N identical cells
is expressed in closed form as

TN
�0� =

1

1 + �Q12
�0�

sin�N
d�

sin�
d�
�2

= 
S12
�0�N
2, �2.15�

where 
 is the Bloch wave number defined by the dispersion
relation

cos�
d� = cos�kada�cos�kbdb� − 	+ sin�kada�sin�kbdb� .

�2.16�

Expression �2.15� indicates that the transmission is perfect
�S12

�0�N=1� for all N when Q12
�0�=−i	− sin�kbdb�=0 or

sin�N
d� /sin�
d�=0. The former occurs at the Fabry-Perot
resonances kbdb=m� in the b layers. The latter produces N
−1 Fabry-Perot oscillations in each spectral band associated
with the total system length Nd. We shall refer to the reso-
nances kbdb=m� as “Teflon resonances” since in the experi-
ment the b slabs are made of Teflon, whereas the a slabs are
just air.

III. EXPERIMENTAL SETUP

In Fig. 2 we show the experimental setup of a microwave
ring guide of height h=1 cm, width w=2 cm, and perimeter
P=234 cm. The waveguide consists of N=26 cells, where
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the b layers are pieces of Teflon of length db=4.078 cm and
the refractive index nb=�2.08. Two electric dipole antennas
connect to a network analyzer. Also shown are the two car-
bon pieces used to absorb the electric field at both ends of
the waveguide and thus mimic two infinite leads connected
to each side of the array of Teflon pieces and air segments.
The frequency range is 7.5–15 GHz corresponding to wave-
lengths from 4 to 2 cm. This arrangement has been used to
study the transport effects of single impurities in the photo-
nic Kronig-Penny model12. Earlier, in an analogous model
with metallic screws instead of Teflon pieces, the microwave
realization of the Hoftstadter butterfly13 was studied. The
same configuration �metallic screws� was used to investigate
transport properties of on-site correlated disorder14–16.

Obviously this waveguide is not rectilinear; in the experi-
ment the Teflon pieces and air segments are not perfect par-

allelepipeds: one side is longer than the other by 5%. How-
ever, since the perimeter �234 cm� is much larger than the
wavelength of the electric field even in the regime of the first
mode, it is expected that the rectilinear model is a good
approximation. In fact, as shown in detail in Ref. 12, a good
quantitative agreement is found by defining an effective
length of the Teflon pieces and the air segments that are
1.95% larger than the smaller side of the Teflon pieces and
air segments. For example, the length of the smaller �inner�
length of the Teflon pieces used in the experiments reported
here is 4 cm, so the effective width db we use in our calcu-
lations is 4.078 cm. We remark that this value is found by
best fitting and is the only fitting, good for the whole fre-
quency range of all our results presented here.

In Fig. 3, curve �a�, we plot the experimentally measured
value of 
S12

N 
 �in what follows, the transmission spectrum�
for the 26-cell periodic array. Curve �c� is the transmission
spectrum 
S12

�0�N
 calculated according to Eqs. �2.15� and
�2.16� and unperturbed Eq. �2.9�. Note that the experimental
transmission spectrum is about 1/5 of the theoretical one.
This decrease in the signal is due to absorption in the metal-
lic walls of the waveguide coming from the skin effect. Ad-
ditionally, the coupling of the antenna varies slightly with
frequency giving rise to small oscillations of the transmis-
sion spectrum on a large frequency scale. Our question is the
global frequency dependence of the transmission spectrum
on the frequency giving us a possibility to reveal resonance
effects and the role of disorder. Note that the band structure
of the spectrum remains practically the same in spite of a
strong absorption �see discussion in Refs. 14–16�.

Inspection of the transmission spectrum 
S12
�0�N
 of the per-

fectly periodic array, Fig. 3, curve �c�, demonstrates the ef-
fect of the Teflon resonances on the transmission bands. We
see two types of bands; namely, bands 1, 2, 4, and 6 show the
N−1=25 oscillations mentioned above, whereas bands 3, 5,

(b)(a)

FIG. 2. �Color online� The microwave guide. Left: overview of
the brass waveguide of perimeter P=234 cm with height h
=1 cm and width w=2 cm. Right: an enlargement of the wave-
guide showing the two carbon pieces �black� and one of the electric
dipole antennas. The other lies on a brass lid �not shown� inserted
near the other carbon piece. The white pieces are the Teflon bars.
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FIG. 3. �Color online� Transmission spectrum for a 26-cell array. Top: 7.3���11 GHz. Bottom: 11���15 GHz. Curve �a�: experi-
mental data for the periodic array. Curve �b�: 
S12

N 
, multiplied by 1/2, for a slightly random ��=0.049� array. Curve �c�: 
S12
�0�N
 for the

perfectly periodic array �da=db=4.078 cm�. Dashed vertical lines mark the position of the Teflon resonances.
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and 7 are flat �
S12
�0�N
�1� around the resonance since 
Q12

�0�
 is
zero at the resonance and very small in some neighborhood
around it. For future reference we shall refer to the second
type of bands as the “resonance bands.” Clearly, these bands
disappear when db→0, turning into those with N−1 oscilla-
tions occurring for delta-function potentials.

In accordance with Eq. �2.5�, the first �lowest� mode in
the air spacings �a slabs� opens at the cutoff frequency �a

cut

= �c /2wna�=7.5 GHz while in the Teflon b layers it opens at
�b

cut= �c /2wnb�=5.2 GHz, which is less than �a
cut�na�nb�.

On the other hand, Fig. 3 specifies the bottom of the first
transmission band at �1

bot=7.387 GHz. So that the real cutoff
�1

bot pertains to the interval �b
cut��1

bot��a
cut where the wave

number ka in the air spacings is purely imaginary, ka

= i�2� /c���c /2w�2−�2. The transmission in this regime
is due to tunneling through the air spacings. This fact makes
the profile of the first band 	see Fig. 3, curve �c�
 somewhat
special: there is a dip in the transmission band right at the
frequency where the first mode opens in the air.

Note that except for the first band, the positions and
widths of the transmission gaps as well as the band profiles
of the experimental curve are well reproduced by the transfer
matrix calculations �2.13�. The discrepancy for the first band
is understood since for low frequencies the wavelength is not
sufficiently small compared to the perimeter of the circular
waveguide, and hence the rectilinear waveguide model fails.
For the second and higher bands, the agreement is better and
the experimental curve does show some evidence of the
small N−1 band oscillations predicted by the model. Clearly,
these do not appear as perfectly regular oscillations and this
irregularity may be caused by experimental imperfections
due to variations in the length and positions of the Teflon
pieces.

The maximum deviation 
db�n�−db
max in the length of the
Teflon pieces is about 0.01 cm and the maximum deviation

da�n�−da
max in the air spacings, due to the placement of the
Teflon pieces, is estimated to be about 0.04 cm. Are impre-
cisions of this order sufficient to break the regularity of the
oscillations?

To check this, we performed a simulation with a disor-
dered sequence assuming 
da�n�−da
max=0.04 cm and an er-
ror described by a random sequence ��n� with a uniform
random distribution in accordance with Eqs. �2.1�, �2.2�,
�2.12�, and �2.13�. The result is plotted in Fig. 3, curve �b�.
This curve has been multiplied by 0.5 in order to show it
together with the perfectly regular case and the experimental
data. Inspection shows that indeed the assumed small error is
enough to break the regularity of the band oscillations giving
a better agreement with the experimental data of the suppos-
edly regular array.

IV. DISORDERED ARRAY

Let us now move to intentionally disordered arrays, with
the lengths of all Teflon bars constant, db�n�=db while the air
layers have random lengths given by Eqs. �2.1� and �2.2�. In
our experimental and numerical calculations, the sequence
��n� is an uncorrelated random function uniformly distrib-
uted in the interval 	−�3,�3
, with unit variance.

A priori it is not known how large a random deviation
from the average value da should be to observe weak, me-
dium, or strong disorder effects in the transmission. We ten-
tatively classify the amount of disorder by the value of the
maximum deviation from the average length of the air spac-
ing divided by the average length of the cells,

� �

da�n� − da
max

d
= ��3/d . �4.1�

Table I shows the values of � we consider in this work
together with corresponding values of relative rms � /d and
�� /d�2. The latter quantity is needed to ease the comparison
with analytical results obtained below. The case of �=0.49

10−2 was discussed above to simulate the errors in the
experimental setup. We call it the case of extremely weak
disorder. Similarly, �=3.0
10−2, 12.3
10−2, and 49.0

10−2, respectively, are called the weak, medium, and
strong disordered cases.

Figure 4 shows the transmission for the array of 26 cells
with the positional disorder. Compared with the case of weak
disorder 	Fig. 4�a�
, for medium disorder 	Fig. 4�b�
 only the
first two gaps are clearly distinguishable; the third only par-
tially. There is no trace of the N−1 oscillations in the trans-
mission bands, and the second, fourth, and sixth transmission
bands have decayed substantially. However, remnants of the
resonance bands are still recognized and so this can be con-
sidered the regime of medium disorder. For strong disorder
	Fig. 4�c�
 the first two transmission bands have disappeared.
There is no longer any evidence of the band structure of the
unperturbed array. But still the transmission spectrum is
close to one in the vicinity of the Teflon resonances. Close
inspection of the plots of Fig. 4 shows that the transmission
spectrum fluctuates more rapidly for the transfer matrix cal-
culations 	Eq. �2.13�
 than for the experimental data. In the
experiment the fast oscillations are suppressed by absorption.
Moreover, the exact pattern of the oscillations is strongly
dependent on the particular realization of the random disor-
der for a given value of the rms deviation �. Although the
random sequence ��n� used in the transfer matrix calcula-
tions was implemented in the experimental setup, small un-
avoidable differences in ��n� contribute to the observed dif-
ferences in some of the oscillations. However, in general the
main oscillations are well reproduced by the transfer matrix
calculations.

The results so far discussed pertain to the array of N
=26 cells so the question arises about the effects on larger
arrays. Our experimental setup does not allow for the imple-
mentation of much larger arrays. However, given that the

TABLE I. Parameter values of random disorder. Here d=da

+db=2da�8.16 cm.

Case � /10−2 �

d �= �
�3

� � �

d �2

Very weak 0.49 0.28
10−2 8.0
10−6

Weak 3.00 1.77
10−2 3.0
10−4

Medium 12.30 7.07
10−2 5.0
10−3

Strong 49.00 28.30
10−2 8.0
10−2
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transfer matrix calculations �2.13� are in good agreement
with the experimental data for N=26 cells, we now consider
only numerically, and later analytically, larger arrays for the
same three cases: weak, medium, and strong disorder.

In Figs. 5�a�–5�c� we plot 
S12
N 
 for an array with N=100

cells, for weak 	Fig. 5�a�
, medium 	Fig. 5�b�
, and strong
	Fig. 5�c�
 disorder. Similarly, in Figs. 5�d�–5�f� we plot 
S12

N 

for an array with N=400 cells, again for weak 	Fig. 5�d�
,
medium 	Fig. 5�e�
, and strong 	Fig. 5�f�
 disorder. Compar-
ing, for example, Figs. 5�a� and 5�d�, corresponding to weak

disorder for N=100 and N=400 cells, respectively, we see
that the effect of increasing the size of the array, keeping the
same amount of disorder, is to further decrease the transmis-
sion, consistent with the localization theory. However, this
decrease occurs only away from the Teflon resonance fre-
quencies. For medium and strong disorder, transmission has
decayed below 10−3 for most of the frequencies except
around the Teflon resonances. Thus, the localization is not
homogeneous at all: the Teflon Fabry-Perot resonances
strongly suppress the localization.
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FIG. 4. �Color online� Transmission spectrum 
S12
N 
 for 26-cell arrays: �a� weak ��=3.0
10−2�, �b� medium ��=12.3
10−2�, and �c�

strong disorder ��=49.0
10−2�. Transfer matrix calculations are shown by thin black solid curves and experimental measurements by thick
red solid curves. Dashed curves correspond to analytical expression �5.18� for the inverse localization length. Perpendicular lines mark the
position of the Teflon resonances.
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FIG. 5. �Color online� Transmission spectrum 
S12
N 
 �solid curves� and exp�−lloc� �dashed curves� for N=100 and N=400: �a�–�c� N

=100 cells; �a� weak, �b� medium, and �c� strong disorder. �d�–�f� N=400 cells; �d� weak, �e� medium, and �f� strong disorder.
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V. LOCALIZATION LENGTH

In this section we derive an analytical expression for the
localization length Lloc and relate it with the experimental
data. In the case of weak positional disorder,

�ka��2 � 1, �5.1�

an analytical expression for this quantity can be obtained as
follows. First, we expand the transfer matrix Q�n� defined by
Eq. �2.9�, up to quadratic terms in the perturbation parameter
ka���n�,

Q̂�n� � �1 −
�ka��2�2�n�

2
�Q̂�0� + ka���n�Q̂�1�. �5.2�

The unperturbed Q̂�0� and first-order Q̂�1� matrices are suit-
able to be presented in the form

Q̂�0� = �u v�

v u� �, Q̂�1� = �iu − iv�

iv − iu� � , �5.3a�

u = 	cos�kbdb� + i	+ sin�kbdb�
exp�ikada� , �5.3b�

v = i	− sin�kbdb�exp�ikada� , �5.3c�

det Q̂�0� = det Q̂�1� = 
u
2 − 
v
2 = 1. �5.3d�

Also, it is useful for further calculations to take into account
that the real and imaginary parts, ur�Re u and ui� Im u, of
the matrix element u can be expressed as

ur = cos�
d�, ui
2 = sin2�
d� + 
v
2. �5.4�

The first equality is identical to dispersion relation �2.16�,
while the second one is a direct consequence of matrix uni-
modularity �5.3d�.

In order to extract the effects that are solely due to disor-
der, it is conventional to perform a canonical transformation
to the Bloch normal-mode representation in transfer relation
�2.8�,

�Ãn+1
+

Ãn+1
−
� = P̂Q̂P̂−1�Ãn

+

Ãn
−
� , �5.5a�

�Ãn
+

Ãn
−
� = P̂�An

+

An
−� . �5.5b�

The transformation matrix P̂ is specified in such a manner to

make the unperturbed matrix Q̂�0� diagonal,

P̂Q̂�0�P̂−1 = �exp�+ i
d� 0

0 exp�− i
d�
� , �5.6�

in complete accordance with the Floquet theorem17, or the
same, the Bloch condition18. The solution of the problem for

the eigenvectors and eigenvalues of Q̂�0� results in

P̂ = �
v
/�+ − iv�/�−

iv/�− 
v
/�+
� , �5.7a�

��
2 = 2�1 − ur

2�ui � �1 − ur
2� = 2 sin�
d�	ui � sin�
d�
 ,

�5.7b�

�+
2�−

2 = 4
v
2sin2�
d� , �5.7c�

det P̂ = det P̂−1 = 
v
2��+
−2 − �−

−2� = 1. �5.7d�

After substituting Eqs. �5.2�, �5.3a�, and �5.7a� into the
canonical transfer relation �5.5a�, one can obtain the explicit
perturbative recursion relations for the new complex ampli-
tudes,

Ãn+1
+ = �1 −

ka
2�2�2�n�

2
+

ika���n�ui

sin�
d� �

exp�i
d�Ãn

+ −
ka���n�v�

sin�
d�
exp�i
d�Ãn

−, �5.8�

Ãn+1
− = �1 −

ka
2�2�2�n�

2
−

ika���n�ui

sin�
d� �

exp�− i
d�Ãn

− −
ka���n�v
sin�
d�

exp�− i
d�Ãn
+.

�5.9�

Now one can see from these equations that one equation
can be directly obtained from the other just by complex con-

jugation, if we suppose that Ãn
+= Ãn

−�. In other words, it is

convenient to seek the amplitudes Ãn
� in terms of action-

angle variables,

Ãn
� = Rn exp��i�n� . �5.10�

In order to derive the equation for the real amplitude Rn, we
multiply Eq. �5.8� by Eq. �5.9�. Within the second order of
approximation in the perturbation parameter ka���n�, we
have

Rn+1
2

Rn
2 = 1 +

2ka���n�
v

sin�
d�

sin�2�n + kada� − ka
2�2�2�n�

+
ka

2�2�2�n�
sin2�
d�

	ui
2 + 
v
2 + 2ui
v
cos�2�n + kada�
 .

�5.11�

The logarithm of Eq. �5.11�, which determines the localiza-
tion length, is also expanded within the quadratic approxima-
tion,

ln�Rn+1
2

Rn
2 � =

2ka���n�
v

sin�
d�

sin�2�n + kada� +
2ka

2�2�2�n�
v
2

sin2�
d�


�1 − sin2�2�n + kada� +
ui


v

cos�2�n + kada�� .

�5.12�

Now we are in a position to write down the expression for
the inverse localization length Lloc

−1 that is known to be de-
fined as follows19:
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Lloc
−1 = 1

2d
�ln�Rn+1

2

Rn
2 �� . �5.13�

The average �ab� is performed over the disorder ��n� and
the average ab is carried out over the rapid random phase �n.
Within the accepted approximation and for uncorrelated dis-
order, see Eq. �2.2�, we may regard the random quantities
��n� and �2�n� to be uncorrelated with trigonometrical func-
tions, containing the angle variable �n. Moreover, it can be
shown �see, e.g., Ref. 19� that the distribution of phase �n,
within the first order of approximation in a weak disorder, is
homogeneous �the corresponding distribution function is
constant�. Therefore, after averaging over �n of Eq. �5.12�,
the term linear in ��n� and the last term in the brackets
vanish and sin2�2�n+kada� is replaced with 1/2. As a result,
we get

Lloc
−1 = �ka��2	−

2 sin2�kbdb�
2d sin2�
d�

. �5.14�

This expression is in complete correspondence with that ob-
tained in Refs. 11 and 20 using a different approach and
reduces to Eq. �13� of Ref. 21 for the limiting case of delta-
like barriers. The appearance of the term sin2�kbdb� in the
numerator of Eq. �5.14� indicates that at frequencies obeying
the Teflon resonance condition kbdb=m�, the localization
length turns into infinity. That is, the random array becomes
transparent and this is what is observed in the experimental
and numerical transmission coefficient plotted in Figs. 3–5.

As is known, the localization length is directly related to
the transmittance TN for a finite array of the length L=Nd
according to the famous relation �ln TN�=−2L /Lloc. In view
of this relation and recalling that TN= 
S12

N 
2, see Eq. �2.13�, it
is convenient to introduce the rescaled inverse localization
length lloc

−1 as

�ln
S12
N 
� = − L/Lloc � − lloc

−1 . �5.15�

According to Eq. �5.14�, one can get

lloc
−1 = ��/d�2F���N . �5.16�

Here we introduced the form factor

F��� = �kad�2	−
2 sin2�kbdb�
2 sin2�
d�

�5.17�

that specifies the frequency profile of the inverse localization
length and is determined only by the parameters of the un-
derlying regular array. The rescaled inverse localization
length, Eq. �5.16�, increases linearly with the number of cells
N and quadratically with the amount of disorder � /d.

In Fig. 6�a�, we plot the form factor F��� for the param-
eters of our system, da=db=4.078 cm, na=1, and nb
=�2.08. In Fig. 6�b�, we present the frequency dependence
of lloc

−1 for an array of 400 cells for the cases of weak, me-
dium, and strong disorder. These figures show that the at-
tenuation of transmission is larger for the sixth band and
least for the first band, and that the states are completely
extended at the Teflon resonances.

In order to compare our analytical results with the experi-
mental and numerical ones, we define the theoretical value

S12

N 
th of the transmission spectrum as follows:


S12
N 
th � exp�− lloc

−1� = exp	− ��/d�2F���N
 . �5.18�

This is what is plotted in green dashed lines in Fig. 4 for the
cases of weak, medium, and strong disorder in the N=26
cells array and in Fig. 5 for the array with N=100 and
N=400.

Inspection of Figs. 4 and 5 reveals that the theoretical
expression for the transmission spectrum provides a very
good description for the case of weak disorder for the whole
range of frequencies. For medium disorder, the agreement is
moderate but only up to the region of the first resonance
band. The higher the frequency the higher the discrepancy, in
accordance with the range of validity �5.1� of expression
�5.16�, namely, �ka��2�1.

We would like to stress that the statistically averaged ana-
lytical results of this section required the structure to be suf-
ficiently long. Therefore, a better correspondence with nu-
merics and experiment is expected for longer samples. The
data in Figs. 4 and 5 confirm this fact. Indeed, by comparing
Figs. 4 and 5, we see that the larger the number of cells in the
array, the better the agreement between the numerical simu-
lations 	transfer matrix calculations �2.12�
 and expression
�5.18�. Moreover, the quantity exp�−lloc

−1� gives a good fit to
the numerical data even for the case of medium disorder and
up to �=11.5 GHz. Observe also that already for N=100 the
nonresonance bands have completely disappeared for the
medium disorder case.

VI. SUMMARY

We have analyzed experimentally and theoretically the
effects of positional disorder in the 1D Kronig-Penney model
formed by a finite number of two alternating dielectric slabs,
focusing on the transmission for weak, medium, and strong
uncorrelated disorder. Our results can be divided in two
parts. In the first part, we show that in spite of the absorption
by the metallic walls of the microwave Kronig-Penney ex-
periment, the numerical simulations, based on the transfer
matrix multiplication �2.13�, describe the experimental trans-
mission for weak, medium, and strong disorder. As expected,
there is complete transparency �transmission coefficient
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ν (GHz)
8 10 12 147 9 11 13 15

0

1000

500
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l−1 lo
c

a) b)

FIG. 6. �Color online� �a� Form factor F�� ,da ,db ,na ,nb� for
da=db=4.078 cm, na=1, and nb=�2.08; �b� inverse localization
length lloc

−1 for N=400 for weak �solid curve�, medium �dashed
curve�, and strong �dotted curve� disorder.
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equals 1� at the Teflon resonances for any amount of disor-
der. Surprisingly, however, localization is strongly inhibited
in a large neighborhood of these resonances. That is, we
found that the so-called resonance bands survive even for
relatively strong disorder and large number of cells, whereas
the nonresonance transmission bands disappear already for
relatively weak disorder. The structured similarity between
experimental and numerical data can be explained by the
distinct nature of absorption and resonance effects. Namely,
the latter is due to coherent effects, in contrast with the non-
coherent nature of absorption.

In the second part of our study, we derived an analytical
expression for the average transmission coefficient, Eq.
�5.18�, under the assumption of weak disorder and for finite
number of cells. To do this, we used the relation between the
transmission coefficient and the localization length that in-
volves the finite size of samples and applied it to the experi-
mental situation. As a result, we found that the analytical
expression for the transmission coefficient reproduces quite
well the frequency dependence of the experimentally ob-
tained data for weak disorder. Note again that the global
correspondence between analytical and experimental results
occurs in the presence of absorption that is unavoidable ex-
perimentally. In addition, transfer matrix calculations for
larger arrays �not realizable in our experimental setup�

showed that this analytical expression is valid even for me-
dium disorder up to a certain frequency. In the limit of an
infinitely long array, and for any amount of disorder, the
transmission spectrum is a set of delta peaks at the Teflon
resonances. Thus, from the above-mentioned correspon-
dence, we conclude that the expression for the localization
length �5.14� is a working quantity for finite samples, a fact
that is not commonly used in applications.

The method we used to derive the expression for the lo-
calization length can be generalized to a more general case of
the correlated disorder,14,15,20–26 for which anomalous effects
in the transmission are predicted and experimentally ob-
served. Our results can be applied also to photonic crystals
and electron superlattices, as well as to the propagation of
acoustic waves in disordered systems.
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